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Abstract

Hierarchical matrices are a nested matrix structure that allows the far-field field blocks of

the dense Method of Moments (MoM) matrix to be low-rank approximated, while keeping

the near-field blocks as unmodified dense blocks. The low-rank compression is performed by

Adaptive Cross Approximation (ACA), seeing up to 90% memory compression and speedup

in direct solve via LU factorization from O(N3) to O(N2.332). These formulations are purely

algebraic and do not make any assumptions about the kernel or structure regularity. Thus

they are applicable to a wide range of problems with minimal modification to the formula-

tion, as opposed to the Adaptive Integral Method (AIM) or Fast Multipole Method (FMM)

which are kernel dependent. In this thesis, the electrostatic formulation of the MoM is ac-

celerated by ACA compression of hierarchical matrices and its performance characteristics

are investigated.
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Chapter 1

Introduction

1.1 Motivation

Computational electromagnetics is the study of numerical methods to solve electromagnetic

problem. They are widely used to simulate electronic devices. They can be used to quickly

prototype and ask “what if” scenarios before the device is fabricated [1]. This provides

advantages of lower cost and faster design cycles. In semiconductor manufacturing, there is

a high upfront cost to create the mask set for the design. After the masks are created, the cost

per chip is roughly constant. In other words the cost to produce 10 chips is comparable 10,000

chips. In addition, the silicon design process is subject to schedule constraints especially for

leading edge nodes. Fab capacity is booked up to years in advance. And the fab may only

offer tape-outs once every few months. One cannot send a design to fabrication any time

they want.

All these factors mean making a single test chip, characterizing it, and putting the post-

silicon learnings into the next design is not suitable. Leading chip designers such as Intel

may only schedule 1 or 2 test chips for the entire design lifetime of a new device. Instead,

the semiconductor design industry has always used simulators to verify the correctness of

their circuit before sending the designs to be fabricated.

One example of this design flow is extracting parasitic capacitances. After the circuit

schematic is completed and verified to be functionally correct, the designer moves to layout.

The transistors, contacts, and metal layers are laid out in physical space. From the physical

layout, parasitic capacitances, resistances, and inductances can be computed. Then these

unwanted values can be added to the initial the circuit simulation to provide a more accurate

representation of circuit operation.

The extraction of the parasitic capacitance can be done with a computational electro-
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magnetic simulator. The designer will go through many iterations of post-layout simulation,

parameter extraction, tweaking the layout, and repeating. These steps should provide a

good balance between speed and accuracy to enable rapid design iteration. As such, the

computational tools themselves should have fast run-time, low memory usage, and produce

accurate results.

1.2 Background

Maxwell’s equations describe the interaction between electric and magnetic fields. They pro-

vide the mathematical basis for a wide range of electromagnetic applications such as semi-

conductor devices, wireless communication, and electric motors. The solution to Maxwell’s

equations is the goal of computational electromagnetic simulators and solvers. For simple ge-

ometries such as a perfect electric conductor (PEC) sphere, the analytic solution is known.

But for geometries that are used in practice, closed form analytic solutions to Maxwell’s

equations rarely exist. One must resort to using numerical methods on a computer to solve

Maxwell’s equations. See Fig 1.1 for an overview of the numerical methods discussed in this

section.

The finite element method (FEM) and the finite different time domain method (FDTD)

are two popular methods for numerically solving Maxwell’s equations. They both use the

differential form of Maxwell’s equations. The FEM subdivides a 3-D space to be solved into

smaller parts called finite elements. Practically, this is achieved by constructing a mesh of the

object. For each individual finite element, a boundary value problem is formulated from the

differential form of Maxwell’s equations that results in a system of algebraic equations. All

the equations coming from the finite elements are combined into a larger system of equations

that model the entire object. Then these equations are solved using variational methods that

seek to minimize an associated error function.

The FDTD method solves Maxwell’s equations in the time domain. The space to be

solved is partitioned into a grid. Then the differential time-dependent Maxwell’s equations

are discretized. The differential form of the equations are used. The derivatives are approx-

imated as differences between adjacent grid cells. Then the finite difference equations are

solved in a leap-frog manner. The electric field is solved at one time step, then the mag-

netic fields are solved at the next time step. This process is repeated to perform a transient

analysis. Or it may be continued until a steady-state behavior is formed.

Note that both of these methods require a volume discretization of the entire solution

domain. This leads to a very large system of equations. Although the system is usually

sparse, these volume methods usually require large amounts of computer memory (RAM)
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to solve the system. They are very good at solving the fields in inhomogeneous medium or

closed cavities such as waveguides. But they do not scale to scattering or radiation problems.

For scattering and radiation problems, a surface integral equation (SIE) formulation is

used. And the Method of Moments (MoM) is used to numerically solve these SIEs. The

MoM or sometimes referred to as the Boundary Element Method (BEM) differs from FEM

and FDTD methods in that it does not require a volume discretization. The quantities of

interest are the surface equivalent charges. They are only distributed on the surface. Thus,

only a surface discretization is required. This is the method that this thesis will focus on.

The major drawback of the MoM formulation is that it results in a dense system. The

theoretical formulation is examined in 2.1. But to give an intuition why the system is dense,

it can be said that interaction of each small surface mesh element must be computed against

every other surface mesh element. This is a quadratic operation, so the resulting matrix has

space complexity O(N2) where N is the number of mesh elements. This is disadvantageous

for a number of reasons:

1. A large amount of computer memory (RAM) is required to hold the problem in system

memory as it’s being worked on by the computer.

2. All matrix entries must be computed. This is called matrix ”fill-in” or ”assembly”.

3. Matrix-vector products are very expensive, as all rows and columns must be considered

resulting in O(N2) time complexity.

There has been many successful techniques developed in the last 30 years that aim to

accelerate the MoM formulation. They achieve this by compressing the dense system through

clever symmetries and approximations. In particular we briefly examine the adaptive integral

method (AIM) and the fast multipole method (FMM). The AIM exploits the translation

invariance of the Green’s function kernel. The FMM approximates parts of the dense matrix

using spherical wave expansion. Both of these methods are kernel dependent. When changing

the environment from free space to a layered media, special development of analytical Green’s

functions are required. These methods typically are paired with an iterative solver such as

the conjugate gradient method (CG) or generalized minimal residual method (GMRES).

They’re not suited for solving multiple right-hand sides (RHS) vectors which occurs when

multiple target frequencies to be solved at the same time. The iterative solution scheme

has to restart for every RHS vector. They may have slow convergence and typically require

matrix preconditioners to speed up the convergence rate.

The method studied in this thesis is adaptive cross approximation method to produce

hierarchical matrices. This method is a purely algebraic method that does not depend on a
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priori knowledge of the kernel. This is a key advantage as it is more robust, able to scale

from DC to high frequencies using the same formulation. The low-rank structure of the

hierarchical matrix can be used to compute fast direct LU decomposition, allowing for direct

solutions[2]. Iterative methods such as conjugate gradient (CG) or generalized minimal

residual method (GMRES) typical use a preconditioning step to speed up convergence. But

if the system is poorly conditioned, the rate of convergence may be slow and not converge

to a low residual.

To date, there have been a handful of studies into the performance of hierarchical matrix

methods at scale where the number of unknowns is in the 10,000 to 100,000 range [3]–[7].

Much of the development is theoretical and numerical examples are only demonstrated on

smaller test cases with simple geometries. This thesis aims to investiage the
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Figure 1.1: An overview of the types of numerical methods in computational electromag-
netics. This thesis focuses on the yellow-colored method of moments variation, that is
accelerated by the green hierarchical matrices. These methods only require a surface dis-
cretization. The red colored differential methods require a volume discretization leading to
larger systems to be solved.
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1.3 Adaptive Integral Method

A popular method for accelerating MoM problem is the Adaptive Integral Method (AIM) [8],

first introduced by Bleszynski et al. in 1996. The A matrix formed by Method of Moments

is split into a near-field region ANR and far-field region AFR

A~x = Anear~x + Afar~x, (1.1)

such that they sum to the total system A matrix, where ~x is the solution vector.

The near-field matrix Anear is treated normally using the Galerkin discretization. But

since it only contains the near-field interactions, most of the matrix entries in a single row

(which represents a single mesh element) will be zero. Only the mesh elements within the

near region of that mesh element will be populated. Thus the near-field matrix Anear is sparse

matrix. And sparse matrix operations can be used to achieve nearly linear time complexity.

The far-field matrix Afar is never computed explicitly. It is always kept in its compressed

form. And only matrix-vector products Afar~x are used in the computation which keeps

the storage complexity to O(N). The compressed form of Afar doesn’t store interactions of

the original basis functions, but instead stores a uniform Cartesian grid of auxiliary basis

functions. These auxiliary basis functions are point-like current sources chosen such that

their strength approximates the far field interactions of the original basis. The original basis

functions are transformed to this auxiliary grid by

Afar = ΛgΛT , (1.2)

where Λ is the basis projection matrix and g is the Green’s function matrix. The pro-

jection matrix Λ is sparse and the Green’s function matrix g has a three-level Toeplitz

structure. The Toeplitz structure is important since the matrix multiplication between a

Toeplitz matrix and another vector is a discrete convolution between the two. After putting

(1.2) into (1.1), we obtain

A~x = Anear~x + ΛgΛT~x. (1.3)

We notice that the product ΛT~x is a vector. The multiplication of this vector with the

Toeplitz matrix g forms the discrete convolution. Due to the translation variance of the

Green’s function kernel, this convolution is computing the equivalent far-field potential at

the uniform grid points due the uniform grid sources which is exactly the goal.

As is known from the convolution theorem, a Fourier transform of a convolution is the

point-wise product of their Fourier transforms. So this matrix-vector product (g)
(
ΛT~x

)
can
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be accelerated by an FFT, computing the point-wise product, then transform back via the

inverse FFT to the desired convolution. This leads to the final expression

A~x = Anear~x + ΛF−1
{
F {g} · F

{
ΛT~x

}}
, (1.4)

where F is the FFT and F−1 is the inverse FFT. The solution scales in time complexity

as O(N1.5 logN) and in memory complexity as O(N1.5)

The problem with the AIM is that it is kernel dependent. It only works for the Green’s

function kernel. It exploits the translation invariance of the kernel, so it is considered a

physics based method. The AIM does not scale well to high frequencies requiring an increas-

ing large number of matrix operators. It also will not work at DC zero-frequency conditions.

These problems are alleviated with a hierarchical matrix method as it is a purely algebraic

method with no dependence on the underlying kernel.

7



1.4 Fast Multipole Method

The Fast Multipole Method (FMM) was first proposed by Greengard and Rokhlin [9] in 1986

for acoustic problems. In 1992, it was first applied to electromagnetic problems by Engheta

et al. with great success [10]. Since the FMM and hierarchical matrix methods are very

similar, it’s useful to understand the FMM to draw parallels to hierarchical matrices.

The FMM is used to rapidly compute pairwise interactions between source and observa-

tion points. Consider two clusters of points located far away from each other. One cluster is

a set of N source points si and the other cluster is a set of N observation points oi. To com-

pute the electrostatic potential at one observation point, the electrostatic potential needs

to be computed for all N si source points. The process needs to be repeated N times to

compute the potential for all N observation points. This standard way of computing has

time complexity O(N2).

The innovation of the FMM is that clusters of source charges sufficiently far away from

observation points will appear as one lump-sum charge to the far observation point, instead

of many individual charges. Instead of computing the interactions between si and oi individ-

ually, the effect of all charges are lumped into one s. And the observation point is lumped

into one o. The electrostatic potential is computed once. Then the results of that calculation

are applied to all observation points. So by this method, all observation points in the same

cluster experience exactly the same electrostatic effect. See Fig 1.2

This process is repeated at finer and finer levels of refinement until some stop condition.

For example, the cluster sizes are progressively decreased until a minimum cluster size is

reached. The FMM has time complexity O(N logN).

The condition that determines if clusters of points are sufficiently far enough apart to

apply the FMM is called the admissibility condition. The admissibility condition is defined

based on two things. The diameters of each individual cluster. And the distance between

clusters. Let the cluster of source points be referred to as A and the cluster of observation

points to be referred to as B.

The diameter of a cluster diam(A) or diam(B) is defined as the maximum distance

between two points within the cluster. The distance between clusters dist(A,B) is defined

as the closest distance between one point from cluster A and another point from cluster B.

Then the admissibility condition is

max{diam(A), diam(B)} ≤ η · dist(A,B), (1.5)

where η is a control parameter. A larger η parameters allows clusters of points closer

together to be admissible, but lowers the accuracy of the method. Typically η is set to one.
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Figure 1.2: Schematic compute process of the FMM.

A downside of the FMM is that it is a physics-based technique. Generally they are

more efficient than purely algebraic techniques (ex. hierarchical matrices), but they need to

be formulated and implemented for a specific case. For example, a free-space FMM solver

cannot be used for problems involving layered media. A multi-layered Green’s function

needs to be used. In addition, a high-frequency FMM solver cannot be used to solve DC or

low frequency problems. This is an advantage that algebraic methods have, as only minor

modifications need to be made before applying the solver to a wide range of problems.
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Chapter 2

Theory

2.1 Problem Formulation for Electrostatic Problem

This thesis focuses on the electrostatic problem. Given an electrostatic potential V (r),

we wish to compute the surface charge distribution ρs(r), that caused the potential. The

capacitance can then be compared from the charge distribution. Each differential surface

charge element can be treated individually. The electrostatic potential from a single point is

dV (r) =
q

4πεr
dr, (2.1)

where dV is the differential voltage, q is the charge at the charge element, and r is the

distance between the observation point of the potential and the charge element.

To compute the total charge, we integrate over the entire surface charge distribution

ρs described by the surface S using differential area integrating element d~S ′. The position

vector ~r is the target point where the potential is measured. The primed position vector ~r ′

is the source point on the surface charge distribution that contributes to the potential. The

integral takes the familiar electrostatic form

V (~r) =

∫
S

ρs(~r
′)

4πε|~r−~r ′|
d~S ′. (2.2)

The analytical solution integrates over the continuously varying surface distribution. But

for the purpose of computer computations, we need to discretize the surface. This means

breaking the continuous distribution into smaller parts and taking the Riemann sum This is

done by meshing the geometry of the problem to produce a 2D surface mesh.

The resulting mesh is composed of flat 2D polygons (usually triangles) that tile the

original surface. The mesh should be fine enough that the surface charge density at any
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point within the same mesh element (i.e. the same triangle) is almost uniform. In other

words in an ideal setup, each mesh element has the same charge density throughout. The

charge density only changes when moving to another mesh element. Note that the mesh

element size does not need to be constant. In fact, it’s better to have large mesh elements

when the surface charge density is expected to not change much (ex. on flat surfaces) and to

change to small mesh elements when the surface charge density is expected to vary quickly

(ex. at edges and corners). This way we reduce the total number of mesh elements which

speeds up computation, without sacrificing accuracy. We now represent the continuous

surface charge in a discrete form

ρs(~r) =
N∑
i=1

aifi(~r), (2.3)

where fi(~r) is a set of basis functions, ai are the coefficients for the corresponding basis

function, and N is the total number of mesh elements. The domain of each basis function

is a single discrete mesh element. Many types of basis functions can be used such as piece-

wise triangular, piece-wise sinusoidal, or the commonly used Rao-Wilton-Glisson (RWG)

basis function [11]. For the following analysis, the pulse function will be used. It is simple

to understand and sufficient for this analysis. The pulse function “turns on” when it is

evaluated over a specific mesh element. Otherwise, it is “off”. In this way, the basis fi(~r)

is selecting the coefficient ai for the corresponding mesh element. Over all other surface

elements, fi(~r) evaluates to 0. The basis function is written in piecewise form

fi(~r) =

1, if ~r ∈ Si

0, otherwise,
(2.4)

where Si is the i-th mesh element. This way of expanding the problem into undetermined

coefficients is known as the Method of Moments [1]. The solution to the problem will be

encoded in the coefficients ai. We can examine the units of the equation. We are solving for

ρ(~r) surface charge distribution which has units of charge per area. Since the basis function is

unit-less and evaluates to 1 when on the particular mesh element, the units of the coefficients

ai must also be charge per area.

We put this expansion of the surface charge distribution back into the governing equation

(2.2) to get

V (~r) =

∫
S

∑N
i=1 aifi(~r

′)

4πε|~r−~r ′|
d~S ′. (2.5)

At this point, we have one equation and N unknowns. To be able to solve for the coeffi-
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cients ai, we need at least N equations. We can produce the N equations by left-multiplying

and integrating both sides of the equation by some testing functions. Mathematically, this is

the same as computing an inner product between the charge density and a testing function.

The common choice of testing functions are the basis functions that were previously used.

If this choice is made, then this technique is called the Galerkin method of the Method of

Galerkin. Each j-index will be a new equation.∫
S

fj(~r) · V (~r)d~S =

∫
S

fj(~r)d~S ·
∫
S∈S

∑N
i=1 aifi(~r

′)

4πε|~r−~r ′|
d~S ′ (2.6)

We can further manipulate this expression by taking summation out of the right-side

integral, since it has no dependence on the integrating variable d~S ′.

∫
S

fj(~r) · V (~r)d~S =
N∑
i=1

∫
S

fj(~r)d~S ·
∫
S∈S

aifi(~r
′)

4πε|~r−~r ′|
d~S ′ (2.7)

This has a matrix form of A~x = ~b with matrix elements

bj =

∫
S

fj(~r) · V (~r)d~S, (2.8)

Aij =
1

4πε

∫
S

fj(~r)d~S ·
∫
S∈S

fi(~r
′)

|~r−~r ′|
d~S ′, (2.9)

xi = ai. (2.10)

We can simplify the matrix elements by using the definition of the basis function. The

basis function we choose was the pulse function (2.4). The only time it evaluates to 1 is

when the position vector ~r is inside the domain of the i-th mesh element Si. Otherwise it

will be 0. Looking at bj, we observe that the only time the integrand is non-zero is when

integrating over the j-th mesh element Sj.

bj =

∫
Sj

V (~r)d~S (2.11)

If the mesh elements are sufficiently small, then it is reasonable to assume that the

potential V (~r) is constant throughout the mesh element Sj. The constant potential can be

brought out of the integral. Let the constant potential in the j-th mesh element be Vj. Then

the integral is only integrating a constant 1 over the domain of ~S ∈ Sj. This is the area of

the j-th mesh element. Let the area of the j-th mesh element be called Tj. The letter T is

chosen because triangular mesh elements are very common. So T is for triangle.
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bj = Vj

∫
Sj

1 · d~S = Vj · Tj (2.12)

The same basis function simplification applies to Aij as well, where Si is the i-th mesh

element.

Aij =
1

4πε

∫
Sj

d~S ·
∫
Si

1

|~r−~r ′|
d~S ′ (2.13)

The first integral in Aij is integrating 1 over the domain of d~S ∈ Sj. This is the area of

the j-th mesh element, which we previously called Tj

The second integral has a similar form to the first integral, but there is a distance term

|~r−~r ′| in the denominator. The target position vector~r comes from V (~r) in the bj expression,

where ~r ∈ Sj. Previously we assumed that the potential was constant across the same mesh

element Sj. So we can approximate the target position vector ~r as pointing to the center of

the j-th mesh element. Let this new approximated target position vector be ~rj.

Likewise, the source position vector ~r ′ comes from ~r ′ ∈ Si. Let this be approximated as

pointing to the center of the Si mesh element. Call this approximated source position vector

~ri.

If the mesh elements are small and well separated, then the integral can be approximated

as the area of the i-th mesh element divided by the distance between the target ~r and source

~r ′ points. Using the above approximations for the position vectors, the denominator can be

rewritten as |~r−~r ′| ≈ |~rj − ~ri|.

Aij ≈
1

4πε

1

|~rj − ~ri|
· Tj · Ti (2.14)

With these simplifications, we can write out the explicit matrix equation A~x = ~b.


T1 · V1
T2 · V2

...

TN · VN

 ≈ 1

4πε


T1T1

| ~r1− ~r1|
T1T2

| ~r1− ~r2| · · ·
T1TN

| ~r1− ~rN|
T2T2

| ~r2− ~r2|
T2T2

| ~r2− ~r2| · · ·
T2TN

| ~r2− ~rN|
...

...
. . .

...
TNT1

| ~rN− ~r1|
TNT2

| ~rN− ~r2| · · ·
TNTN

| ~rN− ~rN|



a1

a2
...

aN

 (2.15)

There are a few important observations to note from the A matrix:

1. The matrix is fully dense. All matrix entries are important and no entries can be

ignored. This is unlike the sparse matrix systems that are produced from finite volume

methods.
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2. The matrix is symmetric. The matrix entry only depends on distance between points,

so distance from point |ri − rj| is the same as |rj − ri|.

3. The diagonal terms have a singularity because |ri − ri| = 0. Generally one must ana-

lytically integrate over these singularities using the full form of (2.6). The assumptions

of the source and target points being well separated become worse when evaluating

matrix terms close to the diagonal.

Looking at (2.13) that computes the matrix entry, each entry has a common inverse

distance operation. This operation that is computed at all matrix entries is known as the

kernel. In literature, this specific kernel is called the single-layer potential operator κ.

κ(~r,~r ′) =
1

4π|~r−~r ′|
(2.16)

It is the DC or zero frequency case of the 3-D Green’s function kernel G

G(~r,~r ′) =
e−jk|~r−~r

′|

4π|~r−~r ′|
(2.17)

where k is the wavenumber given as k = 2π/λ and j is the unit imaginary number.

At zero frequency, the wavenumber k tends to 0, which collapses the exponential in the

numerator to 1. Thus, the single-layer potential operator is recovered.

The big drawback of the standard Method of Moments is the fully dense matrix. Let N be

the total number of mesh elements. To solve the system directly using Gaussian elimination,

it will take O(N3) operations to factorize the matrix and O(N2) to back-substitute to find

the solution. This results in a total time complexity O(N3). To solve the system using

iterative methods such as the conjugate gradient method, it takes O(N2) per iteration [10].

Matrix-vector products will take O(N2) operations. The matrix storage requirement scales

with O(N2). These costly scaling relations prove too cumbersome for large-scale problems.

As much as possible, researchers strive to reduce this to linear storage and linear time

complexity.
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2.2 Gaussian Quadrature Integration

Gaussian quadrature integration is a numerical integration technique that is used to compute

the matrix entries A, as described by (2.13). It approximates an integral by a weighted sum

of function evaluations at non-uniformly spaced locations. For the case of this thesis work,

integrals over 2-D triangles in 3-D space are computed. They are of the form

∫
Si

f(~r)d~S ≈ Ti

Nquad∑
j=1

wjf(αj, βj, γj), (2.18)

where Si is the i-th triangular mesh, f(~r) is the surface integral function to be evaluated,

Nquad is the number of Gaussian integration points, Ti area of the i-th triangle, wj are

the weights, and (αj, βj, γj) are the 3-D coordinates of the chosen quadrature points. The

coordinates are given by Barycentric coordinates and the weights wj are proportional to the

triangle area. See Fig 2.1. The Barycentric coordinates are defined as

α =
A1

T
; β =

A2

T
; γ =

A3

T
, (2.19)

where T is the area of the large triangle, and A1, A2, A3 are the areas of the sub-divided

triangles.

Figure 2.1: A point (x, y, z) is within triangular mesh element. The mesh element is split
into three smaller triangles with areas A1, A2, A3. Figure taken from Fig 2.6 in [12]

.
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2.3 Low-Rank Approximations

A k-rank approximation of A ∈ Rmxn is defined as

A = BC, (2.20)

where B ∈ Rm×k and C ∈ Rk×n. The explicitly expanded form is


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

...
. . .

Am1 Ad2 . . . Amn

 ≈


C11 . . . C1k

...
...

...
...

...
...

...
...

...

Cm1 . . . Cmk



C11 . . . . . . . . . C1n

...
...

...
...

...

Ck1 . . . . . . . . . Ckn

 , (2.21)

where Aij, Bij, Cij are the matrix entries for their respectively matrices. We see that the

cost of storing B and C matrices is O((m×k)+(k×n)) = O(k(m+n)). The cost of storing

the original A matrix is O(m× n).

If k is sufficiently small, then it consumes less memory to only store the B and C matrices.

In practice, k will always be k < n and k < m. This makes the first matrix B in the product

a tall matrix since it has more rows than columns. And the second matrix C in the product

will be wide since it has more columns than rows. This “tall” multiplied by “wide” form it

referred to in this thesis as an outer product.

Since we wish to store the matrix from (2.15) in low-rank forms, the question is how to

find these B and C matrices?

From the spectral theorem, we know for any arbitrary matrix A ∈ Rmxn with m ≥ n,

there are orthogonal matrices U ∈ Rmxm and V ∈ Rnxn such that

A = USVD Σ VSVD
T with Σ =


σ1

. . .

σn

 , (2.22)

where USVD ∈ Rmxm, Σ ∈ Rmxn, and VSVD ∈ Rnxn. The USVD and VSVD matrices

are orthogonal as they are constructed from a linearly independent set of column vectors.

The columns of USVD are uSVD,1, · · · ,uSVD,m are called the left singular vectors of A. The

columns of VSVD are vSVD,1, · · · ,vSVD,n are called the right singular vectors of A. The Σ

matrix is a diagonal matrix with the diagonal entries typically ordered as σ1 ≥ σ2 ≥ · · · ≥
σn ≥ 0. The σi are called the singular values of A. Corresponding, this decomposition

is called the singular value decomposition of A (SVD). The SVD can be thought of as a
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generalized eigenvalue decomposition that works for any sized matrix instead of only square

matrices. Note that the spectral theorem is actually a stronger theorem and this SVD is a

special case of the spectral theorem.

Knowing that an SVD will always exist, we can conveniently use the Eckart-Young the-

orem. It states that the “best” rank-k approximation of A ∈ Rmxn will be the truncated

SVD. The truncated SVD computed as the same form as the SVD, but only taking the

first σk singular values and zeroing all subsequent singular values. After doing the matrix

multiplication, this also has the effect of zeroing the corresponding left and right singular

vectors. This has the form

A = USVD Σ VSVD
T with Σ =


σ1

. . .

σk

0

 , (2.23)

where Ak is the rank-k truncated SVD approximation of A.

The “best” approximation is defined as the one that minimizes the norm of the difference.

It’s been widely proved for many definitions of norms. But the one that is perhaps most

intuitive is the Frobenius norm defined as

||A||F =

√√√√ n∑
i=1

m∑
j=1

|aij|2, (2.24)

where aij are the matrix entries of A. Minimizing the Frobenius norm can be thought

of as minimizing the root mean square error (RMSE) between two matrices. Thus the best

possible low-rank approximation of matrix A is the truncated SVD approximation Ak of the

largest k value such that it satisfies a user specified error threshold

||R||F = ||A−Ak||F ≤ ε||A||F , (2.25)

where R is the error matrix and ε is the truncation error threshold. Typically an error

threshold of 10−3 is used. It’s observed that such a threshold is provides method of moments

results within 1% RMSE of theoretical results.

Unfortunately, the time complexity to compute the full SVD is (m2n + n3). The time

complexity to compute the truncated SVD is (m × n2). Since the method of moments

formulation produces a square matrix of size N×N where N is the number of mesh elements,

it can be said that the time complexity to compute a rank-k SVD approximation Ak isO(N3).

This is too costly for to scale to large problems. The research effort is thus to find ways to
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approximate Ak with improved time complexity. There are many ways to do this such as

tensor product interpolation and Taylor series expansion of the kernel [13].

2.4 Adaptive Cross Approximation

One of the more popular ways to do this approximation is called the Adaptive Cross Approxi-

mation (ACA). It was first presented by Bebendorf in [14] and first applied to electromagnetic

problems by Zhao [6]. It’s a way to construct a low-rank approximation of a matrix A from

well-chosen rows and columns of A. It is written as

Ã = U V =
k∑
i=i

uivi
T , (2.26)

where Ã ∈ Rm×n is the low-rank approximation of A ∈ Rm×n, U ∈ Rm×k and V ∈ Rk×n

are the rank-k matrices, and ui ∈ Rm×1 and vi ∈ R1×n are the row and column vectors of U

and V respectively. These row and column vectors are selected from the original A

ACA is an iterative process. One begins with only picking one row and one column from

the A matrix and seeing if the outer product of the rows and column vectors can sufficiently

minimize the error to within the user set threshold. If the error is too large, then select

another set of row and column vectors from A. The algorithm succeeds when convergence

is reached

||R||F = ||A− Ã||F ≤ ε||A||F , (2.27)

where R is the error matrix and ε is the error threshold.

This is called a “cross” approximation because the selected columns and rows interpolate

the original A matrix entries exactly where they cross or overlap. See Fig 2.2.

A critical part of the algorithm is picking set row and column vectors to add to the

approximation. MATLAB notation will be used for the following section. Let I = [I1 · · · Ik]

and J = [J1 · · · Jk] be the arrays containing a k number of orderly selected row and column

indices from A. In other words, A(I,J) is an k × k sub-matrix of A. In Fig 2.2, this would

be if the dark blue entries were merged into one matrix. It was shown in [3] that a quasi-

optimal row and column selection is to choose the indices such that det |A(I,J)| is maximal.

Unfortunately this is still a computationally difficult problem being NP-hard. So optimal

selection of this is not possible.

Instead, greedy algorithms are used to iteratively construct the sub-matrix A(I,J) where

the det |A(I,J)| is maximized at each step. In Algorithm 1, the approximation starts with
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Figure 2.2: The left 7x7 matrix ix approximated by the outer product of a 7x2 and 2x7
matrix. The approximation is rank 2. The dark blue entries are “crossed” in the outer
product and thus exactly recovered in the approximation.

an empty matrix so the error matrix R is the entire matrix A. Then with each iteration,

more row and column vectors are added until the error threshold is reached.

Algorithm 1 ACA with full pivoting.

1: Set R0 := A, I := , I := , k := 0
2: repeat
3: k = k + 1
4: (i∗, j∗) := argmaxij|Rk−1|(i, j) . find max value for full pivoting
5: I = I ∪ i∗, J = J ∪ j∗ . update row and column index set
6: δk = Rk−1(i∗, j∗) . get the pivot value
7: uk = Rk−1(:, j∗), vk = Rk−1(i∗, :)/δk . slice into the matrix to get the row and

column vectors, but divide the column vectors by the pivot
8: Rk = Rk−1 − ukvk

T . update error matrix
9: until ||Rk||F ≤ ε||A||F . error threshold is reached

The algorithm as given still requires the A matrix to be computed fully before ACA can

start. But there are improved versions of the algorithm where complete knowledge of A is

not required, such as in Gibson [5]. It computes rows and columns on the fly. See section

3.1 for more details about the particular ACA used.

An additional step that is possible after ACA is to further recompress the low-rank

approximation by the SVD. The rows and columns of U and V are almost orthogonal, but

generally not exactly orthogonal. They can be made exactly orthogonal by computing the

QR and SVD decomposition, then assembling the exactly orthogonal versions of U and V

using those factorizations. The idea is that the additional cost of this step is paid off during

the direct LU factorization in the solve step, as the low-rank matrices will be smaller and

thus matrix operations require fewer steps. This additional step is not done in this thesis

work.
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2.5 Hierarchical Matrices

Now that we have sufficient background, we can finally discuss hierarchical matrices. They

were first introduced by Wolfgang Hackbusch in 1999 [15]. It builds on the work of Stefan

Sauter who proposed a panel-clustering method [16].

Hierarchical matrices are a data structure that allows a dense matrix to be represented

in both data-dense and data-sparse sub-matrices. We’ve seen from both the FMM and AIM

techniques that the far-field interactions do not need to be represented on the same level of

detail as the near-field interactions. Thus all three of these MoM acceleration methods can

be thought as different ways to accelerate the far-field regions. The FMM used a lumping

technique of source and observation points to reduce the time complexity of the far-field

region. The AIM used clever FFTs and convolutions to speed-up far-field matrix operations.

The insight that hierarchical matrices add is to approximate the far-field region using purely

algebraic techniques. This allows the acceleration to be kernel independent, thus making the

formulation far more robust. It can be applied without major modification to a wide range

of problems such as DC, high frequency, free space, and layered media.

Hierarchical matrices seek to use low-rank approximations to compress the far-field re-

gions of the dense A matrix. The particular method studied in this thesis is the ACA

low-rank approximation. It’s noted that there other exists other methods to low-rank ap-

proximations such as tensor product interpolation [17] which uses Lagrange polynomials and

hybrid cross approximation [13] which combines both the tensor product interpolation and

ACA.

A key concept in hierarchical matrices is to know which blocks of the A matrix to approx-

imate and which blocks to leave alone. This falls back to the same admissibility condition

that was used in the FMM. Refer to (1.5). If a cluster is determined to be admissible, then

it will be stored as in low-rank approximation. If a cluster is not admissible, it will be stored

in a fully dense form. The admissibility condition works when the mesh structure is already

grouped into clusters. This can be achieved by running a clustering algorithm like k-means

clustering or cobblestone clustering (referred to as cobblestone spatial grouping in [4]) before

the MoM formulation.

The clustering method that is used in this thesis is an recursive method called geometric

bisection. The starting point of the technique is to group all the mesh elements as one

cluster. Then the longest axis is determined. This is the axis that connects the two most

spatially separated mesh elements. The cluster is split at some plane along this axis into two

clusters, such that each sub-cluster has an equal number of mesh elements. This process is

continued until the smallest cluster, referred to as leaf clusters, have reached some minimum
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number of mesh elements.

A visualization of four levels of the geometric bisection clustering method is shown in Fig

2.3 and the corresponding mock-up of the resulting hierarchical matrix is shown in Fig 2.4.

Figure 2.3: Given a spherical mesh, the various levels of refinement are shown. Top left is
base level. Top right is level 1, with two blocks. Bottom left is level 2, which four blocks.
Bottom right is level 3, with eight blocks.

In Fig 2.4, let each numbered cell represent exactly 1/8 of the spherical mesh. The x,

y, and z axis are each bisected, producing eight leaf clusters. In the first level of geometric

bisection, the entire spherical mesh is treated as one cluster. When applying the admissibility

condition, there is no second cluster B so the dist(A,B) is infinite, which means the cluster

is admissible. Thus the entire matrix is colored green.

Then after applying once bisection, the eight clusters are split into two hemispheres each

containing four clusters. The interactions within the same hemispheres are do not pass the
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admissibility condition and thus are colored red. But interactions across hemispheres are

admissible and thus colored green. This leads to two 4x4 cell of admissible blocks and two

4x4 cells of inadmissible blocks. The process is continued until the sphere is divided into

eight quadrant clusters. Refinement can continue beyond this point, but it was stopped for

illustrative clarity.

Figure 2.4: Graphical representation of admissible (green) and in-admissible (red) blocks of
an hierarchical matrix. Increasing levels of refinement moving left-to-right, then top-down.

The structure of the hierarchical matrix is tracked using recursive index sets. An index

set is an array of indices, that are partitioned into groupings that represent the clusters.

The index sets select the rows and columns of mathbfA ∈ Rm×n that are clustered. Let

I = [I1 · · · Im] and J = [J1 · · · Jn] be the arrays containing m and n number of orderly selected

row and column indices from A. In other words using MATLAB notation, A(I,J) is slicing

into matrix A to pull out the rows and columns required to form a sub-matrix using the
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index sets. Due to I selecting rows and J selecting columns, they are referred to as the row

and column clusters according. See figure 2.5.

Figure 2.5: The row and column index sets overlap to select the matrix elements (dark blue).

At each level of the hierarchical matrix, the row and column clusters are constructed. So

the index sets needs to be tracked at all levels. This is done with a tree structure called a

cluster tree. An additional note is that all indices of the A must be used as all blocks must

be assigned as admissible or inadmissible. In practice this means that at all levels of the

cluster tree, the index sets contain all indices from 1 to m or n depending on if it is a row or

column cluster respectively. The only thing that changes is how the indices are partitioned.

For the spherical example in Fig 2.3 and Fig 2.4, the cluster tree would look like Fig 2.6.

For the final hierarchical matrix construction, there is one recursive cluster tree representing

the rows and another recursive cluster tree representing the columns. Together, they are

referred to as the cluster block of a hierarchical matrix.

Figure 2.6: An example of a cluster tree showing the row and column clusters representing
index sets, for the spherical refinement in Fig 2.3. Note that both the row and column cluster
trees would look like this. Figure taken from Fig 6 of [3]

.
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Chapter 3

Methods

3.1 Implementing Hierarchical Matrices

An existing C library for hierarchical matrices called H2Lib was used. It is available from:

https://github.com/H2Lib/H2Libh2lib.

The library was developed by Steffen Borm and his Scientific Computing Group at the

University of Kiel [18]. Borm is a student of Hackbusch, who is the original inventor of the

hierarchical matrix. The library provides data structures for storing hierarchical matrices,

support for common matrix operations, and parsers for standard mesh file formats. This

library was selected because it is a fully-featured hierarchical matrix library with detailed

documentation.

No modifications to the library functions were required. Out-of-the-box it supported

pulse function basis and the single layer potential kernel operator, which is needed for the

electrostatic formulation. The library functions were used to construct an electrostatic prob-

lem of arbitrary mesh and applied voltages.

The key parts of the code are shown below.

1 i n t main ( i n t argc , char ** argv ) {
2 . . .

3 // 1 . load mesh in to geometry

4 psur face3d mesh = read gmsh sur face3d ( f i l ename ) ;

5

6 // 2 . prepare ke rne l operator

7 uint q reg = 2 ; // number o f i n t e g r a t i o n po in t s f o r r e gu l a r i n t e r v a l s

8 uint q s i ng = q reg + 2 ; // number o f po in t s f o r s i n gu l a r i n t e r v a l s

9 bas i s funct ionbem3d row bas i s = BASIS CONSTANT BEM3D;

10 bas i s funct ionbem3d c o l b a s i s = BASIS CONSTANT BEM3D;

11 pbem3d bem slp = new s lp lap lace bem3d (mesh , q reg , q s ing , row bas i s ,
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c o l b a s i s ) ;

12

13 // 3 . cons t ruc t c l u s t e r t r e e from geometry

14 uint m = 4 ; // number o f i n t e r p o l a t i o n po in t s

15 uint c l f = c l f u s e r ; // minimum l e a f c l u s t e r s i z e

16 pc l u s t e r root = bu i ld bem3d c lu s t e r ( bem slp , c l f , r ow bas i s ) ;

17

18 // 4 . cons t ruc t b lock t r e e from c l u s t e r t r e e

19 r e a l eta = e t a u s e r ; // adm i s s i b i l t y parameter eta

20 pblock broot = bu i l d n on s t r i c t b l o c k ( root , root , &eta ,

a dm i s s i b l e 2 c l u s t e r ) ;

21

22 // 5 . cons t ruc t s k e l e t on h i e r a r c h i c a l matrix from block t r e e

23 setup hmatr ix aprx aca bem3d ( bem slp , root , root , broot , accur ) ;

24

25 // 6 . assemble ( a l s o c a l l e d f i l l =in ) matrix va lue s

26 phmatrix V = bu i ld f rom block hmatr ix ( broot , m*m*m) ;

27

28 // 7 . cons t ruc t r ight=hand s i d e vec to r

29 pavector b constant = new avector (mesh=>t r i a n g l e s ) ;

30 f o r ( i n t i = 0 ; i < b constant=>dim ; i++) {
31 // s e t a l l po in t s to 1V

32 b constant=>v [ i ] = mesh=>g [ i ] /2 * e p s i l o n 0 * 1 ;

33 }
34

35 // 8 . s o l v e the system with LU=decompos it ion and back=s u b s t i t i o n

36 pctruncmode tm = new re leuc l t runcmode ( ) ;

37 l rdecomp hmatrix (V, tm , ep s s o l v e ) ;

38

39 // s o l u t i o n vec to r ove rwr i t e s the r ight=hand s i d e vec to r

40 l r s o l v e hma t r i x a v e c t o r ( f a l s e , V, b constant ) ;

41

42 . . .

43 }

The ACA algorithm from the H2Lib library was used. There is are full pivoting and

partial pivoting versions, but focus was spent on the full pivoting version. No systematic

failures or edge cases as described by Gibson were encountered, so no modifications to the

library code was needed. The accuracy threshold for ACA approximation used throughout

all experiment runs was 10−3. This threshold was used by Gibson [5] and Zhao [6]. When

verifying the correctness of the code with a PEC sphere, it was found that this error threshold

provided results within 1% RMSE of theoretical results.
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3.2 Meshing

Surface meshing of geometries was done using Gmsh [19] at varying levels of mesh refinement.

The structures were created with Gmsh’s scripting language. A control parameter called

characteristic length controls the size of the mesh. A smaller characteristic length produces

smaller individual mesh elements, resulting in a denser mesh.

The mesh file was saved in an older .msh format in order to be compatible with the

integrated H2Lib mesh parser.

An example Gmsh script is given below. It produces a spherical mesh with 30 division

along the circumference is given below. This is done by setting the characteristic length to

1/30 of the circumference.

1 SetFactory ( ”OpenCASCADE” ) ;

2

3 s c a l e = 1 . 0 ;

4

5 r1 = 0.5* s c a l e ;

6

7 x1 = 0 . 0 ;

8 y1 = 0 . 0 ;

9 z1 = 0 . 0 ;

10

11 Sphere (1 ) = {x1 , y1 , z1 , r1 , =Pi /2 , Pi /2 , 2*Pi } ;
12

13 Phys i ca l Sur face ( ”Object0 ” ) = {1} ;
14

15 l c = 2*Pi* r1 /30 ;

16 Cha r a c t e r i s t i c Length {1:10000} = l c ;

17

18 Mesh . Algorithm = 6 ;

19 Mesh 2 ;
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Figure 3.1: An example spherical mesh produced by Gmsh, with 30 divisions along the
circumference.
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3.3 Test Methodology

All experimental runs were completed on an up-to-date Ubuntu 22.04 distribution running

within Windows Subsystem for Linux, on a Windows 10 Server 2022 version of Microsoft

Windows. The test machine was equipped with Intel Core i7-9700K CPU and 32 GB of

RAM. The processor has 8 cores and 8 threads, with a base frequency of 3.6 GHz and

a maximum single-core boost frequency of 4.9 GHz. The RAM is DDR4 3200MB/s in a

2x16GB arrangement.

The C test program was compiled using without any GCC -o optimization flags and with

debugging enabled. The GCC optimizations were avoided to aid debugging, as optimiza-

tions may introduce unexpected behavior between the source code and compiled executable.

Other optimizations were used. The BLAS/LAPACK libraries were used to accelerate linear

algebra operations such as matrix-vector product and LU decomposition. OpenMP was used

to parallelize the matrix entry fill-in step.

After the C test program was compiled, a Python wrapper script was used to automati-

cally run results with different parameters and mesh structures. The results were logged as

text files, which were later analyzed and plotted.

Attempts were made to limit the effect of confounding variables. These were background

processes and disk thrashing.

Regarding background processes, firstly the test machine is a shared server. Other users

of the machine were notified when experiment runs were taking place and asked to avoid

using the machine. In addition, the test runs were scheduled overnight during off-hours to

avoid the chance of someone forgetting about the warning and using the machine. Looking

at the Windows server connection logs, the test account was the only account active during

all experiment runs. Secondly during the experimental run, Windows search indexing and

updates were disabled. Background processes were also monitored in both Windows task

manager and Ubuntu system monitor, to ensure no unexpected heavy background tasks were

competing for compute resources during the run.

Disk thrashing is when the system runs out of RAM and must load/store matrix elements

on the hard-drive. It significantly slows down program execution since the CPU has to go

to the hard-drive for memory access, which is much slower than RAM. This would have

artificially added solve time to the runs. The Ubuntu 22.04 virtual machine was configured

to access the 30 GB of RAM, leaving 2 GB for Windows overhead. The test runs were

tuned to keep the memory usage well under 30 GB. The largest consumer of RAM in the C

test program was the hierarchical matrix structure. The largest memory usage of this data

structure during all experiment runs was 20.2 GB. This is well below the 30 GB RAM limit
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with enough margin for the Ubuntu OS and other processes. Thus disk thrashing is unlikely

to have occurred.

Unless otherwise specified, the ACA error threshold ε in (2.27) used was 10−3. It was

observed that this error threshold allowed the PEC sphere to match the theoretical surface

charge distribution within 1% RMSE. This was the value used by Gibson [5] and Zhao [6].

It is noted that Zhao [7] used an error threshold of 10−2 to 10−6 and observed relative error

below 10( − 5) throughout.
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Chapter 4

Results and Discussion

4.1 Verification of Correctness

4.1.1 Sphere

To verify the correctness of the code, a perfect electric conductor (PEC) spherical shell was

simulated. The sphere was chosen because its capacitance is known to have an analytic

solution. The capacitance of two concentric spheres in free space is

C =
4πε0(
1
a
− 1

b

) , (4.1)

where a is the inner radius and b is the outer radius. With an isolated sphere in free

space, the capacitance is obtained by setting b→∞. The capacitance is then

C = 4πε0R, (4.2)

where R = a is the radius of the sphere. See Fig 4.1

The potential of spherical shell was set to a uniform 1 V at all points. Then the total

charge Q can be calculated as

Q = C/V = C/1 = 4πε0R. (4.3)

Since the potential is uniform across the sphere, the charge distribution is also uniform.

So dividing by the surface area of 4πR2, we obtain that the theoretical surface charge dis-

tribution is

ρs =
Q

surface area
=

4πε0R

4πR2
= ε0/R, (4.4)
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Figure 4.1: The capacitance of an isolated spherical shell in free space is obtained by taking
the outer radius b→∞

where ρs is the surface charge density. In the spherical mesh used, the radius R was set

to 0.5 m, so the theoretical surface charge density is ρs = 17.7 pC/m2.

The normalized RMSE was used as a figure of merit. It is computed as

RMSEnormalized =

√√√√ 1

N

N∑
i

(
ρs,theory − ρs,i
ρs,theory

)2

, (4.5)

where N is the total number of mesh elements, ρs,theory is the theoretical surface charge

density of 17.7pC/m2, and ρs,i is the computed surface charge density at the i-th mesh

element.
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We see that in Fig 4.2, the normalized RMSE drops to below 1% when more than 1200

mesh elements are used.

Figure 4.2: Normalized RMSE of the computed surface charge density for a PEC sphere.

In Fig 4.3, we see some patchy areas where the computed surface charge density for each

triangular mesh element is not exactly the same.

In Fig 4.4, we see that the computed surface charge density is not uniform for all mesh

triangles. The maximum and minimum charge densities are plotted. Using finer meshes

beyond 1000 mesh elements doesn’t seem to improve the margin by which the minimum and

maximum charge densities approach the theoretical limit. This is likely due to improperly

tuning a parameter such the admissibility parameter η or the minimum leaf cluster size.

32



Figure 4.3: Visualization of the computed surface charge density using 714 triangular mesh
elements

Figure 4.4: The maximum and minimum surface charge densities across all mesh elements.
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4.1.2 Other Geometries

The DC charge distribution of other structures are examined. Since there is no closed form

analytic solution to these shapes, only the qualitative aspects of the solution will be discussed.

In Fig 4.5, both spheres are set to the same potential of 1 V. Since they have the same

potential, there should be the same amount of positive charge on both spheres. But the

positive charge repel each other where the spheres are closest. This leads to a local region

where the surface charge density is slightly lower. And conversely, the positive charges will

accumulate the furthest away from the other sphere. It is hard to see, but there is a slight

local increase in surface charge density is slightly higher on the furthest ends of the spheres.

Figure 4.5: Two spheres separated by a center to center distance of three radii. Left sphere
set to 1 V. Right sphere set to 1 V.

In Fig 4.6, the left sphere is set to 1 V but the right sphere is set to 0V. We see that the

positively charged left sphere causes negative charges to accumulate where they are closest.

Figure 4.6: Two spheres separated by a center to center distance of three radii. Left sphere
set to 1 V. Right sphere set to 0 V.
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In Fig 4.7, the left sphere is set to 1 V but the right sphere is set to -1V. We see that

there is a gradual transition from positive surface charge density to negative surface charge

density as we move left to right.

Figure 4.7: Two spheres separated by a center to center distance of three radii. Left sphere
set to 1 V. Right sphere set to -1 V.

In Fig 4.8, both wires are set to 1 V. The charges accumulate along the sharp points of

the geometry along the edges and corners, as expected.

Figure 4.8: Two thin wires both set to 1 V.

In conclusion, the quantitative check against the known PEC sphere surface charge den-

sity and the qualitative checks match the expected electrostatic charge behavior. So the

code is confirmed to be working correctly.
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4.2 Profiling

The test case used to profile the characteristics of the ACA hierarchical matrix solver is an

array of cubes (see Fig ). This was chosen because there are many opportunities for the

clustering algorithm to form near-field and far-field regions. So it is expected there will be

large opportunity for low-rank compression to occur.

Since no analytic solution exists, the surface charge density per mesh triangle (weighted

by triangle area) is used as the metric for accuracy. This value quickly converged to the same

value within 3 decimal places after the mesh had more than 5000 mesh elements. This is to

say that all test runs using more than 5000 mesh elements are deemed sufficiently accurate.

So only the memory and time complexity is examined.

Figure 4.9: The test case for profiling the solver is an array of cubes.
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4.2.1 Memory Usage

Test memory usage of the ACA method was measured to be O(N1.412 logN). This is close to

the value reported by Zhao in [6] of O(N4/3 logN) and the value reported by Gibson in [5] of

O(N1.39 logN). The uncompressed matrix should scale with space complexity O(N2) as no

compression is applied. The observed scaling of O(N1.412) is slightly better than predicted

quadratic scaling.

Figure 4.10: Memory usage of the hierarchical ACA method versus the uncompressed dense
matrix. The ACA method was fit with O(Np logN) and the uncompressed method was fit
with O(Np), where p is the fitting parameter
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The compression ratio CR was used as a figure of merit. It is defined as

CR = (1−AACA/Auncompressed) · 100%, (4.6)

where AACA and Auncompressed are the sizes of the ACA and uncompressed matrices respec-

tively. We see in Fig 4.11 the ACA method is far superior in memory usage. It offers up

to 91% matrix size compression. The compression generally gets better the larger the prob-

lem becomes. The compression only starts when the mesh contains more than 1000 mesh

elements. This is due to the low-rank approximation not being aggressive enough. The

individual mesh elements are larger, so only clusters of points very far away are admissible.

This means little low-rank approximation is taking place and the matrix is essentially still

dense.

Figure 4.11: The ACA method allows up to 91% matrix size compression compared to the
uncompressed version
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4.2.2 Matrix Assemble Time

The matrix assemble time of ACA and the uncompressed matrix scale with virtually the same

time complexity. The uncompressed matrix time complexity scales with O(N1.788) while the

ACA scales with O(N1.822). The assemble time of the uncompressed matrix is faster, as

expected. But surprisingly, the ACA is only slightly slower and is growing at roughly the

same rate as the uncompressed version. This is desirable as the little additional time spent

during assembly to compute the low-rank approximations will pay off in the preceding LU

factorization step.

Figure 4.12: The time to assemble the matrix scales with roughly the same power relation.
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4.2.3 Matrix Solve Time

The matrix is solved via a direct LU method. A standard LU factorization has time com-

plexity O(N3). And the back-substitution step has time complexity O(N2). Since the

limiting factor is the factorization step, only this step is studied. It’s noted that during

experiments runs, the factorization would take hundreds or thousands of seconds, but the

back-substitution step rarely took more than 1 second.

The theoretical O(N3) time complexity is exactly seen in the uncompressed matrix as the

fit is O(N3.005). Using ACA compression, the number of computations required to perform

the LU factorization is reduced by exploiting the low-rank block structure. Thus the time

complexity is improved to O(N2.332).

Figure 4.13: The ACA method allows a faster LU factorization because the low-rank ap-
proximations enable less matrix entries to be operated on, thus reducing the number of
computations needed.

However closely looking at Fig 4.13, the LU factorization times in the large mesh region

start to slightly curve downward. The polynomial fit overfits the large mesh region and

underfits the small mesh region. In fact at the smallest mesh size, the LU factorization is

actually slower than no ACA compression at all. The time complexity depends on the exact
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implementation of LU factorization, but the time complexity reported in [17] by Borm (who

also wrote the H2Lib matrix being used) that it is not larger than O(k3N logN+k2N log2N).

This is the green fit on Fig 4.13. It is unable to fit the smaller mesh size region.

Chai reported in [2] they were able to achieve linear time complexity if a nested basis

is used to further compress the hierarchical matrix. In literature these new structures are

called H2 matrices, but it is beyond the scope of this thesis work.
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4.3 Parameter Optimization

Besides the ACA error threshold which was always set to 10−3, there are two other pa-

rameters that can be tuned. They are the minimum leaf size and η admissibility control

parameter. For the previous data, the minimum leaf size was 128 and η = 1. But these two

parameters control how aggressively the hierarchical matrices are clustered, thus affecting

how aggressively the blocks are approximated in low-rank form.

4.3.1 Minimum Leaf Size

The minimum leaf size refers to the minimum number of mesh elements in a cluster before

the geometric bisection clustering algorithm stops. A lower number means more the cluster

refinement will continue longer and the size of the clusters when stopped will be smaller. We

see in Fig 4.14 that the size of the hierarchical matrix experiences a local minimum when

the minimum leaf size is 16.

For this data collection, the admissibility parameter was set to η = 1.

Figure 4.14: There is an ideal minimum leaf size that doesn’t seem to vary between mesh
geometries.
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However this is at a direct trade-off with accuracy. With larger minimum leaf size, the

lowest level clustering stays coarse. There are less admissible blocks. Refer to Fig 2.4. The

refinement level is stopped when there are more red in-admissible blocks. These blocks are

not approximated but kept as dense and calculated exactly. Thus it is more accurate. This

likely needs to be tuned for each geometry. But for the PEC sphere, it seems the minimum

leaf size should not be decreased beyond 64, or else it will suffer a serious loss in accuracy.

Figure 4.15: Decreasing the minimum leaf size almost always lowers accuracy. For the
perfect sphere where the theoretical result is known, a large drop in accuracy occurs when η
is decreased beyond 64.
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4.3.2 Admissibility Control Parameter

Refer to (1.5) for the definition of η. In general, a larger η allows regions that are closer

together to be low-rank approximated. But the validity of the low-rank approximation breaks

down when the two cluster of points are in the near-field of each other. Thus although

increasing η increases the compression and accelerates the LU factorization, it is at the

expense of accuracy. See Fig 4.18.

For this data collection, the minimum leaf size was set to 16, as from the previous

experiment it was observed 16 is the best value for reducing the size of compressed matrix.

Figure 4.16: ACA compression is higher when η is higher, corresponding to more aggressively
allowing admissible blocks to be low-rank approximated.
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Zooming in on the log-log linear section near low η values, we see the fit is approximately

O(N−0.7) to O(N−0.876). That means increasing η by 2x around η ≈ 1 results in a 1.6-1.8x

decrease in ACA compressed size.

Figure 4.17: Slightly changing the value of η around η ≈ 1 can provide large increases in
ACA compression.
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To be on the safe side, the η should be kept to the default value of 1. And it should only

be carefully increased if memory savings are crucial. Fig 4.18 shows that a large drop-off in

accuracy occurs if η is increased beyond 2.

Figure 4.18: Increasing η almost always lowers accuracy. For the perfect sphere where the
theoretical result is known, a large drop in accuracy occurs when η is increased beyond 2.
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Chapter 5

Future Work and Conclusion

5.1 Future Work

Only a very narrow slice of the research field was studied. At every step, there are many

possible algorithms that can be substituted. For example, the ACA method is one way to

approximate the low-rank blocks. Other methods such as tensor product interpolation and

a hybrid ACA have been proposed in [13] and [17]. Further characterizing these methods

would be useful.

Another direction could be to extend the formulation to a general frequency case. Right

now the electrostatic kernel is used, which is the simplest case and does not use complex

numbers. But since these algebraic methods are kernel independent, it is theoretically pos-

sible to extend the code to enable a generalized Green’s function kernel that works at all

frequencies. And one should still be able to recover the DC results presented in this thesis.

Lastly, larger multi-layered structures could be tried. This would more rigorously test

the algebraic clustering and ACA technique to see if the memory and performance savings

hold up to designs more typical of modern semiconductor layouts.

5.2 Conclusion

Hierarchical matrices are a mathematical container that allows the dense Method of Mo-

ments matrix to be selectively represented in low-rank compressed blocks and uncompressed

blocks. The Adaptive Cross Approximation method was used to compute the low-rank ap-

proximations. It is show to have significant memory savings of up to 90% compared with the

uncompressed matrix. This compressed matrix format was able to speed up the direct LU

factorization from O(N3) to O(N2.332). However, care must be taken to tune the minimum
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leaf size and η admissibility parameters to provide a good balance between accuracy and

compute resources.
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